TABLE OF CONTENTS

Preface... vii
1 GENESYS simulator – Dynamic Verification Simulator .. 1
 1.1 Modeling and Simulation with GENESYS ... 2
 1.2 Open Simulator .. 4
 1.3 Simulator Window .. 5
 1.4 Transcript Pane .. 9
 1.5 Execution Hierarchy Pane .. 10
 1.6 Database Entities Pane .. 10
 1.7 Simulation Entities Pane ... 11
 1.8 Simulator Preferences ... 12
2 Introduction to Behavior .. 15
 2.1 Function Flow Block Diagrams (FFBDs)... 15
 2.2 Enhanced FFBDs .. 16
 2.3 Behavior Elements ... 17
 2.4 NumberSpec .. 22
 2.5 ScriptSpec ... 23
3 Control Constructs.. 25
 3.1 Parallel ... 25
 3.2 Select .. 25
 3.3 Multi-Exit Function ... 26
 3.4 Exit Node .. 26
 3.5 Loop .. 27
 3.6 Loop Exit ... 27
 3.7 Iterate ... 27
 3.8 Replicate ... 28
4 Using the GENESYS simulator .. 29
 4.1 Basic Constructs ... 29
 4.2 Items in Models .. 33
 4.3 Iterations ... 35
 4.4 Multi-Exit Functions ... 37
 4.5 Selection Probabilities ... 38
 4.6 Multiple Levels .. 40
 4.7 Loop .. 43
 4.8 Loop Exit .. 44
 4.9 Replicate ... 45
 4.10 Kill Branch ... 46
 4.11 Executing a Model with Links and Items ... 48
 4.12 Execution Order ... 52
 4.13 Resource execution order ... 52
5 Adding Resources ... 55
 5.1 Executing a Model with Resources .. 55
6 Enhancing the Simulator Model Using Scripting ... 59
 6.1 Script Basics ... 59
 6.2 GENESYS Application Programmer’s Interface ... 60
Appendix A - GENESYS simulator Distributions ... 61
Appendix B - Transcript Window Content Description ... 69
LIST OF TABLES

Table 1 Timeline Window Color Codes...7
Table 2 Transcript Window Contents..10
Table 3 Function Element Attributes ..17
Table 4 Item Attributes ..19
Table 5 Link Attributes ...19
Table 6 DomainSet Attributes ..20
Table 7 Exit Attributes ..20
Table 8 Resource Attributes ...21
Table 9 NumberSpec Attributes ..22
Table 10 ScriptSpec Attributes ..24
Table 11 Random Variable Definitions ..62

LIST OF FIGURES

Figure 1 Example of an Enhanced Functional Flow Block Diagram..2
Figure 2 Simulation Timeline...3
Figure 3 Opening the Simulator Display Window from the Toolbar...4
Figure 4 Opening the Simulator Display Window from the Activity Diagram..4
Figure 5 The Simulator Display Window...5
Figure 6 Simulator Window and Timeline Pane..6
Figure 7 Timeline Controls On Simulator Ribbon...8
Figure 8 Transcript Pane in the Simulator Window ...9
Figure 9 Database Entities Pane ..11
Figure 10 User Simulator Preferences ..13
Figure 11 Project Simulation Preferences ..13
Figure 12 User Random Distribution Preferences ..14
Figure 13 User Random Stream Preferences ...14
Figure 14 A Function Flow Block Diagram..15
Figure 15 An Enhanced Function Flow Block Diagram ..16
Figure 16 NumberSpec Type Selector Window..22
Figure 17 Script Editor Window ...23
Figure 18 Single Function ..29
Figure 19 Single Function Simulation Results ...29
Figure 20 Sequence of Three Functions..30
Figure 21 Multiple Functions Simulation Results ..30
Figure 22 Select Construct...31
Figure 23 Select Construct Simulation Results ...31
Figure 24 Parallel Construct..32
Figure 25 Parallel Construct Simulation Results ..32
Figure 26 A Data Store Item ..33
Figure 27 Data Store Item Simulation Results ..34
Figure 28 A Data Trigger ..34
Figure 29 Trigger Item Simulation Results ..35
Figure 30 An Iterate Construct ..36
Figure 31 Iterate Construct Simulation Results ..36
Figure 32 A Multi-Exit Function Construct ..37
Figure 33 Multi-Exit Function Construct Simulation Results ...38
Figure 34 Multi-Exit Function Construct with Selection Probabilities..39
Figure 35 Multi-Exit Function with Selection Probabilities Simulation Results40
Figure 36 Second Function Decomposed..40
Figure 37 Model Containing Decomposition ..41
Figure 38 Results of Model Containing Decomposition ... 42
Figure 39 Execute Decomposition Set to False ... 43
Figure 40 Loop Construct .. 43
Figure 41 EFFBD with Loop and Loop Exit .. 44
Figure 42 Results for Model with Loop and Loop Exit ... 45
Figure 43 A Replicate Construct .. 45
Figure 44 Results for Model with A Replicate Construct .. 46
Figure 45 Model with Kill Branch .. 47
Figure 46 Simulation Results with Kill Branch .. 48
Figure 47 Interface and Link Schema Diagram ... 49
Figure 48 Link-Item Model .. 50
Figure 49 Simulation Results with Item Size = 0.0, Link Capacity = 1000.0, Delay = 0.0 50
Figure 50 Simulation Results with Item Size = 1000.0, Link Capacity = 1000.0, Delay = 0.0 51
Figure 51 Simulation Results with Item Size = 1000.0, Link Capacity = 1000.0, Delay = 0.5 51
Figure 52 Loop Model with Insufficient Resources ... 56
Figure 53 Loop Model with Adequate Resources ... 56
Figure 54 Loop Exit Model with Trigger-Type Resource ... 57
Figure 55 Edit ScriptSpec Window ... 59
Supporting users throughout their entire journey of learning model-based systems engineering (MBSE) is central to Vitech’s mission. For users looking for additional resources outside of this document, please refer to the links below. Alternatively, all links may be found at www.vitechcorp.com/resources.

Webinars
Webinar archive with over 40 hours of premium industry and tool-specific content.

Screencasts
Short videos to guide users through installation and usage of Vitech software.

A Primer for Model-Based Systems Engineering
Our free eBook and our most popular resource for new and experienced practitioners alike.

Help Files
Searchable online access to Vitech software help files.

Technical Papers
Library of technical and white papers for download, authored by Vitech systems engineers.

MySupport
Knowledge Base, Exclusive Webinars and Screencasts, Chat Support, Documents, Download Archive, etc.

Our team has also created resources libraries customized for your experience level:
PREFACE

The purpose of this guide is to provide the user with an understanding of the features and behavior of the GENESYS™ simulator, the discrete event simulator that is part of the GENESYS product suite.

The views in the guide reflect the latest version of GENESYS.

This guide assumes the user has attended the "Model-Based Systems Engineering with GENESYS" course offered by Vitech and has been introduced to the basics of GENESYS and the simulator. This document is intended to reinforce this basic information and provide more detailed instruction on the GENESYS simulator.

This document is organized into six sections.

- Section 1 provides an introduction to the GENESYS simulator followed by a discussion of the various commands the user will need in order to use the simulator.
- In Section 2 modeling of behavior is discussed; this section discusses the GENESYS entity classes and their associated attributes that are necessary to model this behavior.
- Section 3 provides the user with a refresher on the various control constructs used in the simulator.
- Section 4 provides behavior response examples in the form of simulator timelines. Starting with simple examples, complexity is added to demonstrate the behavior of all of the constructs described in Section 3.
- Section 5 focuses on the use of resources in behavior model.
- Lastly, Section 6 provides a brief introduction to the use of Microsoft Visual Basic for scripting within the GENESYS simulator.

The following conventions are used throughout this guide to aid the user:

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Entities</td>
</tr>
<tr>
<td>Duration</td>
<td>Attributes</td>
</tr>
<tr>
<td>consumed by</td>
<td>Relationships</td>
</tr>
<tr>
<td>true</td>
<td>User Selections and Input</td>
</tr>
<tr>
<td>File > Import</td>
<td>Reference Documents, GENESYS Commands, Buttons, Icons, or Tabs</td>
</tr>
</tbody>
</table>
1 GENESYS SIMULATOR – DYNAMIC VERIFICATION SIMULATOR

To completely define a system, one must precisely specify the behavior model detailing the functional and control flows, the inputs and outputs, the physical architecture model, and the performance model.

The inputs to this process include requirements, and the outputs include a system design model. The system design model must satisfy all the requirements in a logical manner so that the system is dynamically consistent. If the behavioral model is flawed and not corrected during the initial design stages, problems will likely multiply during development. Inevitably, when achievement of dynamic consistency is left until the end of a project (during integration and testing), it is the least attainable and the most costly to correct. An automatically generated dynamic verification simulator can help identify flaws early in the development cycle.

The GENESYS simulator is a simulation engine that provides this automatic dynamic verification of operational and/or functional behavior models constructed as part of a system, architecture, program, or process definition in GENESYS. The GENESYS simulator provides the ability to evaluate designs from two perspectives:

1. **Correct logical behavior.** Verify that the design as modeled will in fact execute logically and that activities and functions will occur in the sequence intended. This is of particular importance as an architecture or system design grows more complicated with multiple layers of decomposition and many parallel tasks. As designs grow more complex, it becomes difficult or impossible to validate logical behavior through visual inspection alone. Execution of behavior in the GENESYS simulator can and should be a significant contributor to the task of verification of your logical designs.

2. **System/architecture performance.** Real-world limitations on (and competition for) resources, architecture design selection and functional allocation can all act to constrain the overall performance of a chosen solution. These constraints can be captured in the GENESYS model and their aggregate effects on performance evaluated by executing behavior models in the GENESYS simulator. Process queuing, resource utilization, and communications bandwidth are some of the examples of what can be seen across a timeline, with the results utilized to correct and/or optimize architecture and system designs.

A fundamental benefit of using the GENESYS simulator is the automatic generation of a simulation from the system operational or functional model ensuring that the simulation model and system functional model remain consistent. If changes are made to the simulator, those changes are automatically reflected in the system model. This differs from classic stand-alone simulators in which the simulation itself is tuned with changes often not reflected in the system specification. The net result is virtual prototyping at the system level directly from the system model.
1.1 Modeling and Simulation with GENESYS

This guide provides information on the GENESYS simulator, an option available to enhance the GENESYS systems engineering and architecting tool. The guide assumes some understanding of the concepts of systems engineering, architecting, and functional modeling as well as a basic familiarity with GENESYS commands. Additional background on these concepts can be found in the GENESYS System Definition Guide, GENESYS Architecture Definition Guide, and GENESYS Guided Tour.

The GENESYS simulator provides the capability to simulate behavior – whether represented by activity diagram, Enhanced Functional Flow Block Diagram (EFFBD), or any other behavior representation – in order to analyze the dynamic performance and behavior of your system's functional model. The term “Functional” in this case is a broad term used to describe the type of diagram. In GENESYS this type of diagram is used to model behavior for system Functions, Operational Activities, Test Activities, and Program Activities, entities of the GENESYS classes Function, OperationalActivity, TestActivity, and ProgramActivity, respectively. In subsequent examples, “Function” can be assumed to also mean “Operational Activity” (for architecture development), “Test Activity” (applicable for testing management), or “Program Activity” (applicable for program management modeling). With the GENESYS simulator, you can directly assess resource availability, verify the functional logic, and assess system performance and resource utilization using the behavior specification of your system.

The Enhanced Functional Flow Block Diagram, shown in Figure 1, provides a basis for establishing a multi-layered process model. These models represent sequential, parallel, repetitive, and decision logic used to depict system behaviors. A simulator may be opened for any functional model – complete or incomplete, interim or final – and run.

![Figure 1 Example of an Enhanced Functional Flow Block Diagram](image)

The simulator identifies the discrete events that occur during the simulation execution and constructs a timeline that depicts:

- Functional activation, sequential, parallel or triggered execution, and duration
- Wait states
- Resource inventory history
- Branching selection (based upon random probabilities, or specified criteria)
- Queuing triggers (input items waiting to be processed by functions)
The GENESYS simulator generates a timeline for execution and identifies when Functions are initialized, how long they wait for a trigger (Item) or Resource to be available, the time it takes to perform a Function, and which paths or branches are taken based upon specified probabilities. Figure 2 illustrates the simulation timeline for the EFFBD shown in Figure 1.

Figure 2 Simulation Timeline

The next sections describe how to run the GENESYS simulator and describe the details of the various simulator windows.
1.2 Open Simulator
The simulator executes the behavior of a function.

A simulator can be opened using either of the following methods:

In the Project Explorer, select the Function, or the related Component\(^1\) or OperationalNode, to be dynamically analyzed by the simulator, then from the Home ribbon click the Simulator button as shown in Figure 3.

![Figure 3 Opening the Simulator Display Window from the Toolbar](image)

or

Click the Simulator icon on the Diagram ribbon of an activity diagram, FFBD, EFFBD, or sequence diagram opened on the top-level function of interest as shown in Figure 4.

![Figure 4 Opening the Simulator Display Window from the Activity Diagram](image)

\(^1\) When a Component or OperationalNode entity has a Function related to it using the Performs relation with the relation attribute Behavior Type set to Integrated (Root), the Simulator will dynamically analyze that Function.
When the simulator is first opened, the simulator window will appear. As shown in Figure 5, the simulator window includes a ribbon with a **Simulator** tab and a **Views** tab. The simulator window includes the timeline pane and, depending on the user preference settings, the transcript pane. The timeline pane is the primary pane and independent of the transcript pane. If desired, the transcript pane may be closed without closing the timeline pane. However, if the simulator window is closed, all the associated simulator panes are also closed. The features of each of these panes will be discussed in detail in the following subsections.

The simulator window is associated with the **Function** for which the simulator was opened. Thus, more than one simulator window can be open at a time, each window associated with a particular **Function**. The label on the top line of the simulator window identifies this **Function**.

![Figure 5 The Simulator Display Window](image)

1.3 Simulator Window

Figure 6 shows the simulator window. The primary area of display within this window is the actual simulation timeline. In addition to the timeline, the simulator window also includes the Simulator ribbon containing the simulator control buttons. The simulator timeline displays what is happening over the course of a simulation run.

Depending on both the entities contained in the model and objects selected by the user, the timeline will display **Functions** as they occur during the execution of a behavior model, levels of **Resources** that are utilized during the simulation run, queuing of triggers (**Items**) waiting to be processed by a **Function**, and the throughput of **Links** in terms of the Capacity attribute.

The timeline pane is subdivided into two panels. On the left side, there is a listing of any **Resources** used in the model, the **Functions** as they are encountered, **Link** capacity, and any **Item** queue, depending on entities selected to appear by the user and in the order edited by the user. On the right side, the events or status are displayed chronologically in the simulation timeline for each of these elements listed. Note, the timeline will not list **Functions** that are not executed because of the deterministic or probabilistic logic that controls branching or exit selection.
When a simulation is run, colored duration bars will appear in the timeline. The GENESYS simulator uses these colors to distinguish between different types of events. Table 1 describes the color codes. These will make more sense as the types of events are described in a model execution in Sections 3 and 4.

Timeline Output

GENESYS allows simulation timelines to be viewed, printed and/or saved to a file. Timelines can be saved as PNG, JPEG, Bitmap, GIF, TIFF or XPS files.
Simulator User Guide

Table 1 Timeline Window Color Codes

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teal</td>
<td>The Function is executing after obtaining any needed Resources and without having to wait for a trigger.</td>
</tr>
<tr>
<td>Bright Green</td>
<td>The Function is executing after the trigger(s) arrived.</td>
</tr>
<tr>
<td>Yellow</td>
<td>The Function is enabled but it has not yet initiated execution. It is waiting for a trigger.</td>
</tr>
<tr>
<td>Magenta</td>
<td>The Function is enabled but waiting for Resources.</td>
</tr>
<tr>
<td>Diagonal</td>
<td>The Function is decomposed and its behavior is being executed.</td>
</tr>
<tr>
<td>Grey</td>
<td>The amount of Resource available. This varies as it is consumed, captured, or produced by a Function.</td>
</tr>
<tr>
<td>Red</td>
<td>The amount of Resource reserved for a Function. The Resource Amount Available is not sufficient to enable the function to execute.</td>
</tr>
<tr>
<td>Turquoise</td>
<td>A trigger has arrived and the triggered Function is not enabled resulting in queuing of the item. The trigger is displayed just above the triggered Function.</td>
</tr>
</tbody>
</table>

1.3.1 **Simulator Ribbon**

The commands in the simulator ribbon control the execution of the simulator. It is from here that the user starts execution, steps through the execution, stops execution, and resets the simulator. The commands are grouped into six sections: Save; Editing; Control; Timeline; Show; and Debug.

In the **Save** section:

- **Save Timeline** allows simulation timelines to be saved to a file. Timelines can be saved as PNG, JPEG, Bitmap, GIF, TIFF or XPS files.

- **Save Transcript** allows the simulator transcript to be saved to a CSV file.

In the **Editing** section:

- **Copy** allows text to be copied from the panes, such as the Transcript pane.

- **Find** allows text in the panes to be searched.

- **Select All** enables all the text in a pane to be selected.

In the **Control** section:

- **Run** the simulation begins or continues execution of the Function’s behavior model.

- **Step** through the simulation advances the simulator to the time of the next event to occur as defined by the behavior model and executes all events that occur at that time.

- **Stop** the simulation halts execution, particularly useful when in an undesired loop.

- **Reset** the simulation clears the simulator clock, the timeline window, and the transcript window in preparation for a new run. The simulator must be reset before subsequent executions.
The controls in the Timeline section, of the Simulator ribbon, allow the timeline pane to be configured by the user. Options include changing the relative scale of the timeline, the order of appearance of the elements used in the simulations, the relative sizes of the panes, and the time scale increment:

```
<table>
<thead>
<tr>
<th>Normal</th>
<th>Edit Order</th>
<th>Recompute Order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 7 Timeline Controls On Simulator Ribbon

Timeline Major Scale changes the time scale increment. The width of the timeline displayed in the right-hand pane of the timeline window can be adjusted using the Timeline Major Scale drop-down selection. The timeline is adjusted as a new setting is selected. Normal is the initial default setting, but this default setting can be changed from the User Preferences (see User Simulation Preferences). Different scales are possible depending on the situation. At times, it may be important to view the details, in which case use the Large setting. At other times, it may be desirable to view the complete timeline on the screen, in which case use the Screen setting or the Small setting can be used.

Timeline Minor Scale permits selecting the amount of timeline to display via a slide bar.

Edit Order opens a dialog listing the entities in the timeline. Use the up-down arrows to change the order of appearance of an entity in the timeline. The entities generally appear in the timeline list in the order that they are encountered in simulation execution. It may be desirable to reorder the rows in the timeline using the Edit Order dialog box. Re-ordering the list does not alter the order of execution but rather just alters the display.

Recompute Order returns the entities to their natural execution order. When a Function or Resource is added to the list using the Database Entities pane (discussed in Section 1.6), the new entity will appear at the bottom of the list of entities. Use Recompute Order to include the Function in the order in which it was encountered.

Timeline Increments allows the major and minor timeline tick increments to be changed by the user. The default values can be set in the User Preferences (see User Simulation Preferences).

Deferred/Realtime Rendering button allows the user to choose whether the timeline is updated as the simulation executes, in Realtime mode, or whether the timeline is displayed when the simulation has finished executing, in Deferred mode.

In the Show section:
- **Transcript** opens the simulation Transcript pane if it is closed.
- **Execution Hierarchy** opens the simulation Execution Hierarchy pane if it is closed.
- **Database Entities** opens the Database Entities pane to allow the user to select which entities are displayed in the simulation timeline.
Simulation Entities opens the Simulation Entities pane if it is closed. Blocked Events opens the simulation Blocked Events pane if it is closed.

In the Debug section:

- **Debug** places the simulator in Debug mode.
- **Break All** sets debugging break points in the simulation model.

Result Detail

The Result Detail area at the bottom of the simulator window provides the total duration, in elapse time units, for the execution of the simulation.

1.4 Transcript Pane

The simulator transcript pane (Figure 8) displays each event that occurs during the simulation and the time (on the simulator clock) when the event occurred. In general, the transcript records the time each event occurred, the type of event (started, enabled, waiting for resources, etc.), and the number and name of the element involved in the event. The transcript pane provides a basis for understanding the detailed execution of the behavior model. From this pane, you can review the detailed events as they occurred during the execution of the simulator.

![Figure 8 Transcript Pane in the Simulator Window](image)

There are nine columns of data contained in the transcript pane. A brief description of each of these columns is presented in Table 2; a more detailed explanation of the contents is contained in Appendix B.
Table 2 Transcript Window Contents

<table>
<thead>
<tr>
<th>Column</th>
<th>Title</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time</td>
<td>A floating-point number showing the simulation time at which the event occurred.</td>
</tr>
<tr>
<td>2</td>
<td>Event ID</td>
<td>Before an event can be executed at a scheduled time, it must first be added to the schedule. As each primary event is created and added to the schedule, it is assigned a sequential event ID, which is shown in Column 2.</td>
</tr>
<tr>
<td>3</td>
<td>Process ID</td>
<td>A process represents the execution of a branch in the model. Processes are arranged in a parent-child hierarchy. Each process is assigned a sequential hierarchical ID number based on the ID of the parent.</td>
</tr>
<tr>
<td>4</td>
<td>Event Name</td>
<td>This column lists the event type. Many events are related to each other and occur in pairs or higher-order groupings.</td>
</tr>
<tr>
<td>5</td>
<td>Construct ID</td>
<td>When the GENESYS simulator builds a simulation model from a GENESYS behavior model, each construct and branch in the simulation model is assigned a unique ID. The fifth column lists the ID of the construct responsible for each event.</td>
</tr>
<tr>
<td>6</td>
<td>Structure</td>
<td>If the event is executing a control construct then the name of the structure being processed is displayed in this column. If the event is processing an entity then this column is blank.</td>
</tr>
<tr>
<td>7</td>
<td>Number</td>
<td>If the event is executing an entity then the number of the entity being processed is displayed in this column. If the event is processing a structure then this column is blank.</td>
</tr>
<tr>
<td>8</td>
<td>Name</td>
<td>If the event is executing an entity then the name of the entity being processed is displayed in this column. If the event is processing a structure then this column is blank.</td>
</tr>
<tr>
<td>9</td>
<td>Event Execution Data</td>
<td>The format of ninth column depends on the Event Name and the type of construct that generated the event. The possible execution data formats specific to each kind of event are listed in Appendix B.</td>
</tr>
</tbody>
</table>

1.5 Execution Hierarchy Pane
The Execution Hierarchy pane contains the top level Function’s structure (and descendant structures) shown as an indented hierarchy. You can expand or collapse a particular node by clicking the symbol to the left of the node. A red flag shows branches, constructs, and Functions that have not been executed. The flag turns green once the node is executed.

1.6 Database Entities Pane
The Database Entities pane (Figure 9) allows you to select the entities to be displayed in the timeline. For instance, you can choose whether or not to show all of the Resources in the model.
The **Database Entities** pane lists all **Functions**, **Items**, **Links**, and **Resources** included in the model. You may select which entities you want displayed in the timeline by checking or unchecking the entity. If an entity is not checked, that element will not be displayed in the timeline. By default, the **User Preferences** settings indicate which classes of entities are automatically displayed.

The lists of entities on each of the **Functions**, **Items**, **Links**, and **Resources** tabs can be sorted according to the criteria set using the drop-down menu in the lower right-hand corner of the pane.

1.7 Simulation Entities Pane

The **Simulation Entities** pane lists all **Functions**, Triggers (**Items**), Datastores (**Items**), **Resources**, and **Links** in the model. This is different from the **Database Entities** pane in that you can choose whether or not to display each occurring instance of an entity. This is particularly helpful when you want to focus on a particular instance of an entity but do not care about the other instances at this time. A [T] is used to identify the entities being Tracked and hence displayed in the timeline window. Right-click on the entity in order to Set Track, Release Track, or Toggle Track for the selected entity. This is useful when attempting to view the timeline that involves a large number of entities. By turning off the tracking of selected entities, the timeline can be customized to display only those entities of interest.
1.8 Simulator Preferences

There are some preferences that can be preset when working with the simulator. The preferences are accessed from `GENESYS > Preferences`. These preferences do not change the current values, but when a new simulator window is opened or a new entity is created, the preference settings can be used. In this section the preferences related to the simulation will be addressed, as well as `Random Number` items.

The **User Simulation** preferences (Figure 10) allow users to select the GENESYS simulator panes the user would like to automatically see when opening a simulator. [Note the timeline pane will always be open.]

The **User Simulation** preferences also allows classes of entities to be set that will initially be displayed in the timeline pane. Users can also choose to display intermediate **Functions** (those **Functions** whose decompositions are executed), set the initial scale, and set the initial tick increments. These default settings will become the initial settings each time the simulator window is opened. However, all these values can also be changed independently in the simulator timeline window once it is opened.
The Project Simulation preferences (Figure 11) allows Default Iterations to be set (the default number of times an Iterate construct will loop) and the Default Duration (the default time units a Function executes). For now, keep in mind default values can be set.

The User Random Distribution preferences (Figure 12) allows default values to be set when a random
distribution value is selected for the Function Duration. There will be more on this when the Duration attribute and the NumberSpecs are discussed in Section 2. Keep in mind, every newly created Function will have these default values when Random is selected from the Edit NumberSpec dialog window.

Figure 12 User Random Distribution Preferences

The User Random Streams preferences (Figure 13) allow repeatability to be assigned to an object. To establish a repeatable simulation run, users must 1) assign a stream to each random duration or resource amount that is of concern, and 2) establish and save a profile. The profile saves the seed upon which the random number generator operates for each assigned stream and will cycle through each stream assigned each time the simulator is executed. Use the up and down arrows to scroll through the 100 streams. Stream [100] Branch is saved for branch selection logic.

Figure 13 User Random Stream Preferences
2 INTRODUCTION TO BEHAVIOR

To completely define a system, the behavior model must be precisely specified detailing the functional and control flows, the inputs and outputs, the physical architecture model, and the performance model.

GENESYS supports behavior analysis of a system or component of the system. The Function Flow Block Diagrams (FFBDs) and Enhanced Function Flow Block Diagrams (EFFBDs) support specification of required functional sequencing. The FFBD displays the control dimension of the behavior model, whereas the EFFBD includes the data dimension of the integrated behavior model.

2.1 Function Flow Block Diagrams (FFBDs)

The Function Flow Block Diagrams (Figure 14) supported by GENESYS have the classic features of logic structures and hierarchical representations. The constructs allow users to indicate the control structure and sequencing relationships of all functions accomplished by the system being analyzed, including concurrency, branching, iteration, and looping. With Boolean logic specified at decision points, these FFBDs, in combination with the functions’ inputs and outputs, form an executable behavior model, allowing dynamic validation via discrete event simulation methods.

![Figure 14 A Function Flow Block Diagram](image)

GENESYS also supports the standard hierarchical features of FFBDs, including the decomposition of a function displayed as an FFBD at the next lower level.

<table>
<thead>
<tr>
<th>Black Box Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the decomposition of a Function has been defined, the icon representing that Function has a black box in the upper-left corner as a visual cue. In other words, the Function has sub-functions.</td>
</tr>
</tbody>
</table>
2.2 Enhanced FFBDs

The Enhanced Function Flow Block Diagram represents the behavior for a system or component of a system, as shown in Figure 15. The EFFBD displays the control dimension of the behavior model in an FFBD format with a data flow overlay to effectively capture behavior in a single, synchronized view.

![Figure 15 An Enhanced Function Flow Block Diagram](image)

2.2.1 Triggers vs. Data Stores

When displaying the data flow as an overlay on the control flow, GENESYS distinguishes between the two primary types of items, triggers, and data stores. Items that control the execution of a Function by their presence or absence are designated as triggers. A Function begins execution when it has received all of its triggers and its necessary Resources have been acquired. Therefore, triggers are Items with control implications. Items that are not triggers are designated as data stores. Data stores represent inputs to and outputs from Functions that are non-triggering and have no effect on control.

In order to clearly represent the behavior of triggers and data stores, the following rules are applied when displaying Items in GENESYS:

- **Trigger Items**
 - Triggers are shown with green backgrounds by default.
 - Triggers are globally connected with double-headed arrows at the sinks.
- **Data Store Items**
 - Data stores have gray backgrounds by default.
 - Data stores are globally connected with single-headed arrows at the sinks.
2.3 Behavior Elements

The GENESYS classes that pertain to the behavior of the system are Function, Item, Link, DomainSet, Exit, and Resource. The equivalent GENESYS classes of Function, Item and Link that pertain to the operational behavior of an architecture using the Department of Defense Architecture Framework (DoDAF) schema are OperationalActivity, OperationalInformation, and Needline. In the discussions below, the information provided applies to both the functional and operational classes, and can be used by both the Systems Engineer and Architect in developing and analyzing the functional and operational behaviors of the system and architecture. For these classes, certain entity and relationship attributes determine how the system performs, while other attributes are informational and pertinent to the system documentation. When running GENESYS simulator, the focus is on the behavior of the system, so only the possible settings for those attributes that affect simulation execution will be discussed in this guide.

2.3.1 Function

A Function is a transformation that accepts one or more inputs/triggers (Items) and produces outputs (Items). It is decomposable, and its behavior is defined using an EFFBD. When executed by the simulator, certain attributes of a Function (and attributes of relationships between a Function and Resources and Exits) affect its execution. These are described in Table 3 below. An order has been established for determining when these attribute values are executed for a given Function in a GENESYS simulator model. This order is discussed in Section 4.12.

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>DATA TYPE</th>
<th>SIGNIFICANCE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>NumberSpec</td>
<td>Determines how long the Function will run once it starts.</td>
<td>The value can be set to a constant, a draw from a probability distribution, or the result of executing a script.</td>
</tr>
<tr>
<td>Begin Logic</td>
<td>ScriptSpec</td>
<td>Begin Logic contains a script that is executed at the very beginning of Function execution.</td>
<td>If the exit logic is nil, the selection probability attributes of the exits by relationships are used to choose the exit. If the selection attributes are not set, each exit branch will have an equal likelihood of selection. Selection of the exit occurs at the end of Function execution. Note, if the Function has only a single exit, the script will not be executed.</td>
</tr>
<tr>
<td>Exit Logic</td>
<td>ScriptSpec</td>
<td>The Exit Logic specifies – through a script – which exit is to be taken for a multi-exit Function.</td>
<td>If the exit logic is nil, the selection probability attributes of the exits by relationships are used to choose the exit. If the selection attributes are not set, each exit branch will have an equal likelihood of selection. Selection of the exit occurs at the end of Function execution. Note, if the Function has only a single exit, the script will not be executed.</td>
</tr>
<tr>
<td>End Logic</td>
<td>ScriptSpec</td>
<td>End Logic contains a script that is executed at the very end of Function execution.</td>
<td>–</td>
</tr>
<tr>
<td>Timeout</td>
<td>NumberSpec</td>
<td>Maximum time permitted between Function enablement and the start of execution.</td>
<td>If the timeout is exceeded, the function will not execute. Upon timeout, if a timeout exit branch (Exit) exists, it is automatically selected.</td>
</tr>
<tr>
<td>ATTRIBUTE</td>
<td>DATA TYPE</td>
<td>SIGNIFICANCE</td>
<td>NOTES</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Execute Decomposition</td>
<td>Boolean</td>
<td>Indicates whether the Function or its decomposition is to be executed. True means that the Function’s decomposition is executed. When false is selected, the Function’s decomposition is ignored and the Function’s attributes and relationships are used.</td>
<td>The default value for this attribute is true; all decomposed functions are fully expanded and executed during simulation. To execute at a higher level, one can set the Execute Decomposition to false. For these functions, the model will execute at that higher level and will ignore the more detailed decomposition models below it.</td>
</tr>
<tr>
<td>Acquire Available captures</td>
<td>Boolean</td>
<td>True means that the Function acquires the amount of Resources currently available and waits for the remainder of the Resource to become available before it executes. False means that the Function waits for the full amount to become available before it acquires the Resource amount it needs to execute.</td>
<td>True has the effect of making resource requests into a FIFO sequence. False allows a function with smaller resource needs to take the resource while the function with larger needs is waiting.</td>
</tr>
<tr>
<td>Amount consumes</td>
<td>NumberSpec</td>
<td>This value is the amount of Resource that will be consumed by the Function when it starts execution.</td>
<td>Can be a constant, random number, or defined by a script. Amount is determined upon Function enablement.</td>
</tr>
<tr>
<td>Acquire Available consumes</td>
<td>Boolean</td>
<td>True means that the Function acquires the amount of Resources currently available and waits for the remainder of the Resource to become available before it executes. False means that the Function waits for the full amount to become available before it acquires the Resource amount it needs to execute.</td>
<td>True has the effect of making resource requests into a FIFO sequence. False allows a Function with smaller resource needs to take the Resource while the Function with larger needs is waiting.</td>
</tr>
<tr>
<td>Amount produces</td>
<td>NumberSpec</td>
<td>This value is the amount of Resource that will be produced by the Function when it completes execution.</td>
<td>Can be a constant, random number, or defined by a script. Amount is determined upon Function termination.</td>
</tr>
<tr>
<td>Type exits by</td>
<td>Enumeration</td>
<td>This value identifies the type of exit from the related function. The Timeout exit is taken if the Function times out; otherwise a Normal or Exception exit is taken.</td>
<td></td>
</tr>
</tbody>
</table>
2.3.2 Item

Items are the inputs, triggers, and outputs from Functions. As shown in Table 4, two attributes guide and affect simulation results.

Table 4 Item Attributes

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>DATA TYPE</th>
<th>SIGNIFICANCE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Enumeration with possible values: nil, Analog, Digital, Physical, Mixed</td>
<td>The attribute type determines how items are handled in triggering multiple Functions.</td>
<td>If the item Type is Physical, the Item will trigger only the first Function that is enabled. The others will wait for a later instance of the Item. Any other type is duplicated, triggering all Functions related to the Item via the triggered by relation.</td>
</tr>
<tr>
<td>Size</td>
<td>NumberSpec</td>
<td>This value identifies the size of the Item that is transferred by a Link. The total time for an Item to be transferred across a Link is: Link Delay + (Item Size / Link Capacity).</td>
<td></td>
</tr>
</tbody>
</table>

2.3.3 Link

A Link is the physical implementation of an interface. The Link element represents the path over which the Items are transferred. As shown in Table 5, two key Link characteristics are Capacity and Delay.

Table 5 Link Attributes

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>DATA TYPE</th>
<th>SIGNIFICANCE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>NumberSpec</td>
<td>This value identifies the flow capacity of the Link. Assuming an ideal model, Item and Link time Units are the same, a Link with a Capacity of 1.0 can transfer an Item of Size 1.0 in 1 simulation time unit.</td>
<td></td>
</tr>
<tr>
<td>Delay</td>
<td>NumberSpec</td>
<td>Delay represents the time delay that occurs when an Item traverses the Link. It is intended to model the actual propagation delay and processing delay, not the delay due to Resource utilization. The total transfer time is the Delay time plus the actual transfer time of the Item.</td>
<td></td>
</tr>
</tbody>
</table>

2.3.4 DomainSet

A DomainSet element is used to define the number of iterations in a control structure. Table 6 describes the attribute that may affect the simulator results.
Table 6 DomainSet Attributes

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>DATA TYPE</th>
<th>SIGNIFICANCE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>NumberSpec</td>
<td>Count specifies the number of iterations for the associated construct.</td>
<td>Can be a constant, random number, or defined by a script.</td>
</tr>
</tbody>
</table>

2.3.5 Exit

An **Exit** element identifies a possible path to follow when a **Function** completes. By definition, multi-exit **Functions** have more than one **Exit** (i.e., more than one target of the *exits by relation*). Table 7 describes each of the attributes of the **Exit exit for** relationship that affects the simulator results.

Table 7 Exit Attributes

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>DATA TYPE</th>
<th>SIGNIFICANCE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type exit for</td>
<td>Enumeration with possible values: Normal, Exception, Timeout</td>
<td>This value identifies the type of Exit from the related Function. Timeout Exit is taken if the Function times out; otherwise, Normal or Exception Exit is taken.</td>
<td></td>
</tr>
<tr>
<td>Selection Probability exit for</td>
<td>Float</td>
<td>This value indicates the likelihood of exiting the Function via the Exit.</td>
<td>This value is normalized, meaning that the sum of all the probabilities for all exits does not have to be 1.0. If the selection likelihood of taking Exit 1 is 3 and the selection likelihood of taking Exit 2 is 2, then the probability of the Function exiting by Exit 1 is 3/5 or 60%. NOTE: Setting a selection probability overrides use of the default (equal likelihood). Setting the Exit Logic attribute of a Function takes precedence over any selection probabilities.</td>
</tr>
</tbody>
</table>

2.3.6 Resource

The **Resource** element represents something (e.g., power, MIPS, channels, etc.) that a system uses or generates. Each **Function** may **consume**, **capture**, or **produce** **Resources**.

Table 8 describes the **Resource** attributes and the attributes of **consumed by**, **captured by**, and **produced by** relations that affect simulation results.
Table 8 Resource Attributes

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>DATA TYPE</th>
<th>SIGNIFICANCE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount Type</td>
<td>Enumeration with possible values: Float Integer</td>
<td>Indicates the type of value for the Resource amounts.</td>
<td></td>
</tr>
<tr>
<td>Initial Amount</td>
<td>NumberSpec</td>
<td>Specifies the amount of the Resource that is present in the system when the system starts.</td>
<td></td>
</tr>
<tr>
<td>Maximum Amount</td>
<td>NumberSpec</td>
<td>Specifies the largest amount of the Resource that can be present in the system at any time.</td>
<td>Once the maximum is reached, the Function producing the Resource will continue to execute but will not produce any of the resource until its level drops below the maximum.</td>
</tr>
<tr>
<td>Acquire Available captured by</td>
<td>Boolean</td>
<td>True means that the Function acquires the amount of the Resource currently available and waits for the remainder of the Resource to become available before it executes. False means that the Function waits for the full amount to become available before it acquires the Resource amount it needs to execute.</td>
<td>True has the effect of making Resource requests into a FIFO sequence. False allows a Function with smaller Resource needs to take the Resource while the Function with larger needs is waiting.</td>
</tr>
<tr>
<td>Amount captured by</td>
<td>NumberSpec</td>
<td>Determines the amount of the Resource that will be acquired when the Function starts execution and released when the execution terminates.</td>
<td>Can be a constant, random number, or defined by a script. Amount is determined upon Function enablement.</td>
</tr>
<tr>
<td>Acquire Available consumed by</td>
<td>Boolean</td>
<td>True means that the Function acquires the amount of the Resource currently available and waits for the remainder of the Resource to become available before it executes. False means that the Function waits for the full amount to become available before it acquires the Resource amount it needs to execute.</td>
<td>True has the effect of making Resource requests into a FIFO sequence. False allows a Function with smaller Resource needs to take the Resource while the Function with larger needs is waiting.</td>
</tr>
<tr>
<td>Amount consumed by</td>
<td>NumberSpec</td>
<td>Determines the amount of the Resource to be acquired when the Function starts execution.</td>
<td>Can be a constant, random number, or defined by a script. Amount is determined upon Function enablement.</td>
</tr>
<tr>
<td>Amount produced by</td>
<td>NumberSpec</td>
<td>Determines the amount of the Resource to be generated upon completion of the Function.</td>
<td>Can be a constant, random value, or defined by a script. Any computation is made at the end of Function execution.</td>
</tr>
</tbody>
</table>
2.4 NumberSpec

NumberSpec is a special GENESYS attribute type that provides a great deal of flexibility in specifying and modeling systems. A NumberSpec can be a constant value, a random value or the result of a script. NumberSpec attributes are listed in Table 9. A NumberSpec Type Selector window is shown in Figure 16.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Class/Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>Function</td>
</tr>
<tr>
<td>Amount</td>
<td>Function-Resource captures/captured by relation</td>
</tr>
<tr>
<td>Amount</td>
<td>Function-Resource consumes/consumed by relation</td>
</tr>
<tr>
<td>Amount</td>
<td>Function-Resource produces/produced by relation</td>
</tr>
<tr>
<td>Timeout</td>
<td>Function-Exit exits by/exit for relationship</td>
</tr>
<tr>
<td>Count</td>
<td>DomainSet</td>
</tr>
<tr>
<td>Size</td>
<td>Item</td>
</tr>
<tr>
<td>Capacity</td>
<td>Link</td>
</tr>
<tr>
<td>Delay</td>
<td>Link</td>
</tr>
<tr>
<td>Initial Amount</td>
<td>Resource</td>
</tr>
<tr>
<td>Maximum Amount</td>
<td>Resource</td>
</tr>
</tbody>
</table>

Figure 16 NumberSpec Type Selector Window
• Select **Constant** to set the attribute value to a fixed value throughout the simulation execution.
• Select **Random** to utilize a distribution to set the attribute value at the start of each execution of the **Function**. There are a number of distributions from which to choose. The default distribution is the one set in **User Random Distribution Preferences**. For a listing of the possible distributions and a brief description of each, see Appendix A – GENESYS Simulator Distributions.
• Select the **Script** option to create a Microsoft Visual Basic script to determine the attribute value. The Script Editor Window as shown in Figure 17. GENESYS will execute the script at the start of each execution of the **Function** once the necessary **Resources** have been acquired and triggers processed. More information on scripting is provided in Section 6.

![Figure 17 Script Editor Window](image)

A NumberSpec script must exit with a Return construct that returns a variable containing the value to be used by the attribute.

2.5 ScriptSpec

A ScriptSpec is a type of attribute that is used to provide control or flexibility to a GENESYS simulation model. There are three **Function** attributes that are ScriptSpec type. These are listed in Table 10. On each execution of a given **Function**, the script defined in these attributes is executed as the **Function** is executed.
Table 10 ScriptSpec Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeginLogic</td>
<td>Function</td>
</tr>
<tr>
<td>EndLogic</td>
<td>Function</td>
</tr>
<tr>
<td>ExitLogic</td>
<td>Function</td>
</tr>
</tbody>
</table>

The script is entered/modified by clicking the **Edit** button next to the attribute in the **Properties** window. The **Edit** button opens a Script Editor window (Figure 17) where the script is built using Microsoft Visual Basic and the GENESYS API.

The last command executed in an Exit Logic ScriptSpec must be a Return construct that returns a variable containing the Exit element for the selected exit branch. There are no special requirements on Begin Logic and End Logic ScriptSpecs. Refer to Section 6 for additional information on using Microsoft Visual Basic and the GENESYS API.
3 CONTROL CONSTRUCTS

To support a full range of behaviors, the FFBD and EFFBD involve typical modeling constructs described below. It is important to understand the semantic meaning of the constructs in order to understand how they are interpreted by the GENESYS simulator.

3.1 Parallel

A Parallel construct consists of an AND node, followed by separate branches that rejoin and terminate at another matching AND node. Each branch can contain any number of Functions and control constructs. In contrast to sequences of functions and control constructs where the next entity cannot be executed until the previous one completes, the parallel construction designates that the parallel branches can be executed concurrently (even though they may interact through triggers).

When executed by the GENESYS simulator the first entity on each branch will be enabled at the same simulation clock time. The construct cannot be exited (from the second AND node) until all branches have completed their processing. Control is then passed to the next Function or Construct after the parallel construct.

3.2 Select

A Select construct consists of an OR node followed by multiple branches that rejoin at a matching OR node. Each branch can contain any number of Functions and control constructs. In contrast to a parallel construct in which all branches are executed, with a Select construct only one branch is executed. Thus, the Select construct is an exclusive OR.

Each branch may be assigned a selection probability to determine the likelihood of execution during the simulation. If there are no branch selection probabilities, each branch will have equal likelihood of being selected for execution.
3.3 Multi-Exit Function

A Multi-Exit Function is a control construct where multiple branches exit from a Function and rejoin at an OR node. Each branch is labeled with the name of its associated Exits and can contain any number of Functions and control constructs. The criterion for selecting which exit branch to follow is specified by the Function, either using a Selection Probability attribute associated with the exits by relation or by scripting logic embedded within the Exit Logic attribute of the Function. If there are no exit probabilities and the Exit Logic attribute is empty, each branch will have equal likelihood of being selected.

One would normally use a Multi-Exit Function construct in lieu of a Select construct when the selection criterion can be specified by scripting logic in the Exit Logic attribute or via a corresponding exit node within the Function’s decomposition.

3.4 Exit Node

In the case of a Multi-Exit Function, Exit Nodes establish the mapping between the completion of the decomposition behavior and the exit branches of the parent Function.

There should be at least one Exit Node in the Function decomposition for each exit branch for the Function. The name for the corresponding exit branch is shown below each exit node icon.

When an Exit Node is encountered during simulation, the decomposition level is exited and the corresponding branch of the multi-exit Function is followed.
3.5 Loop

A Loop construct consists of a pair of LP nodes that enclose a branch and are connected with a loop back line. The branch can contain any number of Functions and control constructs. These will be repeatedly executed in sequence. The branch will typically contain a Loop Exit construct to conditionally exit the loop construct. Without a Loop Exit, the Loop construct becomes an endless loop.

A descriptive annotation should be specified for each Loop construct. The annotation is displayed above the loop back line. This annotation is only descriptive and does not impact execution.

3.6 Loop Exit

The Loop Exit construct provides the mechanism for exiting a loop. When the Loop Exit construct is encountered, the innermost loop is immediately terminated, enabling the construct or Function following the loop.

3.7 Iterate

An Iterate construct consists of a pair of IT nodes that enclose a branch and are connected with a loop-back line. This line is automatically labeled with the name of the associated DomainSet element.

The branch can contain any number of functions and control constructs. These will be repeatedly executed (in sequence) the number of times predefined by the DomainSet Count attribute.

If the Count attribute of the DomainSet is not set, the number of iterations will revert to the system default. The default number of iterations is the one set in Project Simulation User Preferences.
3.8 Replicate

A Replicate construct consists of a pair of RP nodes that enclose a main branch and are connected with a coordination branch. This coordination branch is automatically labeled with the name of the associated DomainSet element.

The replicate construct is a shorthand notation for identical processes that operate in parallel. The main process logic is shown on the main branch. The coordination between these processes is handled via the coordination branch. An example of a situation handled by the Replicate would be a supermarket in which multiple checkout lanes support shoppers (represented by the Functions on the main branch) and a manager supports the various checkout lanes as required (represented by the Functions on the coordination branch).
4 USING THE GENESYS SIMULATOR

The previous chapters established the building blocks of modeling that the GENESYS simulator executes. This chapter builds sample models step by step, illustrating the use of constructs and the corresponding execution characteristics.

4.1 Basic Constructs

4.1.1 Executing a Single Function

Figure 18 Single Function

Figure 18 is a model of a single Function. Figure 19 shows the results of executing this model. Looking at the timeline window, this Function, First Function, executed for 10.569 simulation time units. The timeline lists the Function entity in the left pane and shows an execution timeline in the right pane, demonstrating that the function execution took approximately 10 units. The transcript which appears below the timeline lists the events that occurred during this simulation run. Briefly, at time 0.0 simulation units, First Function was enabled. It was waiting for resources; there were none required, so also at time unit 0.0 the Function started. At time 10.5690245683168 time units, First Function completes.

Duration Default

In the Single Function example, no duration was set for the Function. The default preferences in GENESYS specify that in the case of a function with no duration specified, GENESYS will use a Normal distribution with a mean of 10.0 and a standard deviation of 1.0. The presence of defaults such as this enable you to quickly develop and execute models as the system evolves.
4.1.2 Executing a Sequence of Functions

The three Functions are executed one after another in sequence (Figure 20). When First Function completes, Second Function is enabled, starts, and finishes. Then it is Third Function's turn. The timeline is shown in Figure 21.

4.1.3 Executing a Select Construct

When a select construct is encountered, the simulator will select one branch to follow and execute all nodes and constructs on that branch. Only one branch will be taken, and by default, there is an equal chance of selecting each branch. Thus, for our example in Figure 22, there is 50/50 chance of selecting each branch.
As shown in Figure 23, Second Function was executed, but if the simulator is reset and run again, then First Function may execute. There are, of course, times when one branch is weighted heavier than the other, such as when it is more likely that one function would be executed. Assigning selection probabilities is discussed in the Section 4.5, Selection Probabilities.
4.1.4 Executing a Parallel Branch

For the example model in Figure 24, the parallel construct (represented by the AND nodes) indicates both branches are to be traversed in parallel; therefore, both Functions are to execute concurrently. The simulator transcript and timeline in Figure 25 show that both Function entities were enabled and started at exactly the same time. First Function happened to finish before Second Function, but if the simulator is reset and run again, Second Function may complete first. This is once again due to the default setting for the Duration attribute, which is set to be a normal distribution. If one or both of the Functions’ Duration attribute(s) are set to a constant value, then the Function will run for exactly that number of time units.

Figure 24 Parallel Construct

Figure 25 Parallel Construct Simulation Results
4.2 Items in Models

4.2.1 Executing Data Store Items

Data store Items have nothing to do with the control of the model; they simply represent data that one Function outputs and another Function receives as input. They have no direct impact on the execution of the model. An example model is shown in Figure 26.

![Figure 26 A Data Store Item](image)

As shown in the GENESYS simulator transcript and timeline in Figure 27 the data store, Some Data, was written at approximately 10.08 simulation units, just as First Function and the Parallel construct were finished.
4.2.2 Executing Data Store Triggers

Triggering Items have an impact on control of the model. Functions do not start until they are enabled and receive their triggering Item(s).

![Figure 27 Data Store Item Simulation Results](image)

Figure 27 Data Store Item Simulation Results

![Figure 28 A Data Trigger](image)

Figure 28 A Data Trigger
Earlier, when a model with a parallel branch was executed, both Functions began at exactly the same time. By adding a trigger between the Functions in Figure 28, Second Function cannot start until the trigger is received. Since the trigger is an output of First Function, it is not available until First Function is completed.

![Figure 29 Trigger Item Simulation Results](image)

As shown above in Figure 29, Second Function was enabled at 0.0, the same time as First Function. However, it was not able to start until First Function was complete and could pass the Item to Second Function. As shown previously in Table 1, the timeline is color-coded to assist in this interpretation. Durations for Functions that do not have triggers are shown in teal. Durations for Functions that have triggers are shown in bright green. Yellow indicates the time span from when the Function was enabled to when the triggering Item arrived and the Function executed.

Displaying Items in the Timeline

If triggering Items do not appear in the timeline, select: Database Entities, in the simulator window ribbon, to display the items. Refer to Database Entities Pane (Section 1.6) for more information.

4.3 **Iterations**

So far, we have been looking at simple functional flows that execute once. Often functions and logic need to operate repetitively. We designate this by enclosing the repeating logic with an iterate construct.
Figure 30 An Iterate Construct

When the simulator is executed on the model shown in Figure 30, the results (Figure 31) show that the model is executed three times (as specified by either the system default setting or by the DomainSet defining the iterate). With each iteration, both Functions are enabled at the same time, First Function executing immediately and Second Function waiting for the trigger Item before it is able to execute.

Figure 31 Iterate Construct Simulation Results
4.4 Multi-Exit Functions

Up to this point, we have seen basic simulation models where one Function progresses to the next. In reality, a Function may have multiple exit paths that represent a selection of the next steps to be taken given some condition identified by the Function. In Figure 32 we added multiple exits (i.e., by establishing three targets for the exits by relation) from First Function, thus adding the following three new Exit elements: Bad Application, Incomplete, and Good Application. On each exit branch, we added a Function (Fix Application, Do More Work, and Next Function, respectively). Depending on the results of First Function, the execution will continue with Fix Application, Do More Work, or Next Action after the Item (Some Data) is output and we are able to trigger Our Second Function.

Figure 32 A Multi-Exit Function Construct

When the simulator is run on this model, the simulator generates a random number and selects the appropriate branch. Note from the resulting timeline (Figure 33) that First Function executed each time the simulator looped through the Iterate. Since First Function has three exit branches, the Functions performed following First Function will be dependent on the random number generator used by the simulator. In the first iteration, First Function exits by Good Application (resulting in the execution of Next Function). In the second iteration, First Functions exits by Bad Application (resulting in the execution of Fix Application). In the third iteration, First Function also exits by Good Application. Note in all three cases, Second Function
awaits the trigger output from First Function before beginning execution. If we reset and run again, our results will vary since we are using a random number generator to select the exit branch.

Figure 33 Multi-Exit Function Construct Simulation Results

4.5 Selection Probabilities
The user can specify the probability that a specific branch is taken from a Select construct or that a specific exit is taken from a multi-exit Function. If not specified, there is an equal chance that a particular branch will be taken.

Note
There are no constraints on the value entered for a selection probability. If the path selection information is based on trial data or other information, it is not necessary to convert the data into percentages. GENESYS will normalize the information provided. For example, in a 2-branch select construct, if the first branch is taken 4 times and the second branch is taken 17 times and these values are entered as selection probabilities, during execution there will be a 4/21 (or 19%) chance of taking the first path.

If only some branches have selection probabilities, any branch without a probability will be treated as having zero probability.

In the case of a multi-exit Function, one of the exit paths is selected, and execution continues down that path. The exit branches, Bad Application, Incomplete, Good Application, in our model have been assigned likelihoods of 56, 32, and 12, respectively. The sums of the assigned probability values do not have to equal 100 percent; they will be normalized by the simulator. We changed the Count attribute of the DomainSet, the Iterate, to 10. Figure 34 shows our revised model. Figure 35 shows the results from the simulation run.
Based on these probabilities, one would expect Fix Application to be selected most often and Next Application to be selected least, which was the case.

Figure 34 Multi-Exit Function Construct with Selection Probabilities
4.6 Multiple Levels

Functions may be decomposed into lower-level models. To illustrate this point, we have added application-processing functions as shown in Figure 36 as the decomposition of Second Function.

Returning to our Top Function (Figure 37), we see that once a Function has been decomposed to another level of activity, the Function icon contains a black square in the upper left corner. During simulation, if the attribute Execute Decomposition of Second Function is set to true, the characteristics of Second Function are ignored and the characteristics of the three subordinate functions that decompose Second Function are used. Similarly, if the attribute Execute Decomposition of Second Function is set to false, the characteristics of Second Function are used during execution. We have inserted another Function following Second Function; Process Order executes after Second Function.
Figure 37 Model Containing Decomposition
There may be times when you do not want to execute the decomposition of a Function. If the Execute Decomposition attribute value is set to *false*, then the Function rather than its decomposition is executed. By default, the Execute Decomposition is set to *true*. Note the timeline bar with the diagonal lines (Figure 38). This bar represents the duration of the decomposed Function, Second Function. The starting time for this Function corresponds to the start time of the first subordinate Function, Receive Application, and the completion time corresponds to the completion of the last subordinate Function, Process Application.

With the Execute Decomposition attribute value of Second Function set to *false*, execution of our example results in the Timeline shown in Figure 39.
Figure 39 Execute Decomposition Set to False

4.7 Loop

A Loop construct in a model causes the simulator to repeat the enclosed branch logic. If we replace the Iterate with a loop, the enclosed logic would be repeated indefinitely rather than a fixed number of times. The model in Figure 40 will repeat First Function indefinitely. One would have to click **Stop** on the simulator to get the simulation to cease.

![Figure 40 Loop Construct](image)
4.8 Loop Exit

A Loop Exit provides the mechanism by which a loop can be terminated. When the simulator encounters a Loop Exit, the simulator will jump to the innermost closing loop node and execute the Function or construct immediately after the loop close. In Figure 41 we have replaced the Iterate with a Loop and added a Loop Exit to the Bad Application branch. We have also changed the selection probabilities.

4.8.1 Executing a Model with a Loop and Loop Exit

You can see from the timeline below in Figure 42, we looped 6 times before First Function exits by the Bad Application exit. After exiting the loop, the next Function in sequence, Stop Work, executes to complete the simulation run. If we reset and run again, our results will vary, but we will always stop only after we encounter the loop exit on the Bad Application branch.
4.9 Replicate
Sometimes multiple instances of identical sets of functions and logic need to operate simultaneously. We designate this by enclosing the replicated logic with a replicate construct.

Figure 43 A Replicate Construct
When the simulator is executed on the model shown in Figure 44, the results (Figure 45) show that the three instances of the replicated logic are executed simultaneously. The number of replicated instances is specified by either the system default setting or by the DomainSet defining the replicate. With each replicate, instantiated Functions are enabled at the same time, with each instance of First Function executing immediately and Second Function waiting for the trigger Item from its associated First Function before it is able to execute.

4.10 Kill Branch

When a kill branch is completed, all functions within the parallel construct immediately stop and control is transferred to the construct following the parallel construct. This kill status specification permits you to model termination paths for concurrent behavior. If specified as a kill branch, the label "kill" will be displayed at the front of the branch below the control flow line.

As shown below in Figure 45, the model consists of three branches; two of these branches contain loops without exits. By designating the third branch as a kill branch, the loop branches will terminate upon execution of the third branch. Often Parallel construct branches will contain infinite Loop constructs that need to be terminated simultaneously upon a specific event. Adding an additional parallel branch and designating the branch as a "kill" branch, as illustrated below, represents this.
When a kill branch completes its execution, all executing Functions within the parallel construct immediately stop and control is transferred to the construct following the parallel rejoin, in this case, the Function Stop Work. Any Resources captured by these Functions will be released; however, these Functions will neither produce any Resources nor generate any Items. In our model, we exited the parallel construct when Prepare Report completes execution. The results are shown in Figure 46.
4.11 Executing a Model with Links and Items

GENESYS provides a modeling capability that integrates both the functional and physical views of the system. The modeling semantics are shown in the schema diagram below (Figure 47). The simulator is a valuable tool for evaluating the feasibility of a proposed architecture once the functional allocations and the association of the **Items** to the **Links** is completed. The systems engineer will be able to evaluate the architecture’s performance and possibly discover unexpected results. The following examples show how **Link** Delays can affect overall system timeline.
The GENESYS simulator evaluates three attributes (Delay, Size and Capacity) within the **Item** and **Link** classes respectively when it computes the total time for a **Link** to transfer an **Item** as shown in the following equation:

\[
\text{Total Link Time} = [\text{Link Delay} + (\text{Item Size}/\text{Link Capacity})]
\]

To show the impact on performance, a model was created and run with variation of these attributes. This model is shown in Figure 48. Note Some Data is transferred by a **Link**, Transfer Link.
Initially the Item Size is set to 0.0; the Link Capacity is set to 1000.0 with a Delay of 0.0. Simulation results with these values are shown in Figure 49. Note there is no delay. Once First Function completes execution, the trigger, Some Data, is created and triggers Second Function, allowing the start of execution.

![Figure 49 Simulation Results with Item Size = 0.0, Link Capacity = 1000.0, Delay = 0.0](image)

For the second simulation run, the Item size is increased to 1000.0. Results for this simulation run are shown in Figure 50. Note the total run time is increased to 117.27 due to the delay caused by the time necessary for the Link to transfer the item.
Lastly, as shown in Figure 51, the Link Delay is increased from 0.0 to 0.5. The overall system performance is further degraded due to this Link Delay.

In summary, GENESYS provides the means to define interfaces between Components, and with the GENESYS simulator, the functional interfaces of the system can be evaluated to determine the effects of interfaces on the system design.
4.12 Execution Order
A simulation run is defined as an execution path through the functional model. The execution of a Function is constrained by its Duration, Exit Logic, and any specified Timeout as well as Resource availability. Resource availability during a simulation run is dependent upon the Initial Amount of the Resource, the Maximum Amount of the Resource available and the rate of production and consumption of the Resource. As discussed later, scripts provide a mechanism to dynamically control these factors affecting execution. Therefore, the order in which scripts are executed is significant and must be considered when building a simulation model using scripts. The following discussion assumes these attributes capitalize on the use of scripts and provide a discussion on the order of execution.

When the GENESYS simulator is opened or the reset command is issued, the simulation model is initialized. The initialization process evaluates the Initial Amount and Maximum Amount of all Resources and traverses the functional flow structure of the top level function on which the simulator was opened. Each branch encountered in the traversal constructs is traversed from left to right. Children branches of constructs are traversed from top to bottom. When a Function construct is encountered, its decomposition is traversed if the Execute Decomposition attribute value of the Function is set to true.

As each Function construct is encountered during the initialization process, Resources and Links associated with the Function are initialized. A Resource is associated with a Function if the Function captures, consumes, or produces the Resource. A Link is associated with a Function if the Function inputs, outputs, or is triggered by an Item carried by the Link. Resources are initialized before links; however, no particular order is followed in the initialization of the Resources or the initialization of the Links. For example, if a Function outputs multiple Items carried by Links, the Links are not processed in any particular order.

4.13 Resource execution order
When a Resource is encountered during the model execution, the Maximum Amount attribute is evaluated followed by the Initial Amount attribute.

4.13.1 Link execution order
With respect to the execution model, Links are defined by their Capacity and Delay. When a Link is encountered, the Link Capacity is evaluated followed by the evaluation of the Link Delay.

4.13.2 Function and ProgramActivity Script Execution Order
When the simulation model is executed, the functional flow structure is traversed in the same order as during the initialization process. Most of the behavior exhibited by the simulation model is defined by the Processing Units (elements of the Function and ProgramActivity class) in the domain model.

When the flow of control moves to a function and the function is enabled, attributes are evaluated in the following order:

1. The Begin Logic attribute is evaluated. The Begin Logic is where any preconditions on the function are set before the normal function behaviors are executed.
2. The Timeout attribute is evaluated.
3. The captures Amount attribute is evaluated for each captures relationship. There is no specific order when there are multiple captures relationships for the function.
4. The consumes Amount attribute is evaluated for each consumes relationship. There is no specific order when there are multiple consumes relationships for the function.

After all triggers (Items) and Resources required by a Function are available, the Function’s Duration attribute is evaluated to determine the completion time of the Function when the Function start event occurs.
When a **Function** is going through the last phase of its execution during the finish event, attributes are evaluated in the following order:

1. **Item** Size attribute is evaluated for each *outputs* relationship. There is no specific order when there are multiple *outputs* relationships for the **Function**.
2. **Produces** Amount attribute is evaluated for each *produces* relationship. There is no specific order when there are multiple *produces* relationships for the function.
3. If the **Function** is a multi-exit function, the Exit Logic attribute is evaluated.
4. The End Logic attribute is evaluated. The End Logic script is where any post conditions can be performed.

However, if the Functions are located in a branch other than the kill branch and the kill branch completes execution before the completion of the Function, the Function will terminate execution at the same time that the kill branch completes execution. If this termination time is before its normal execution, i.e. at the end of the Function's duration, then

1. The Items will not be generated.
2. Resources will not be produced.
3. The Exit Logic attribute will not be evaluated.
4. The End Logic attribute will not be evaluated.

DomainSet Script Execution Order

The Count attribute of the **DomainSet** on an Iterate construct determines the number of iterations through the construct. The **DomainSet** Count attribute is evaluated on the first iteration through the branch when flow of control moves to an iterate.
5 ADDING RESOURCES

Adding resources to your model allows users to investigate their systems' resource requirements and effects of resource contention on the timeline. The GENESYS base schema contains the Resource class. Resources can be produced by, consumed by, or captured by a Function when running the GENESYS simulator. The simulator will account for the production, consumption, or usage of these resources during execution of the model. As previously discussed in Section 1.6, the resources may be displayed on the simulator timeline.

Resources are consumed when a Function begins its execution, and are produced when the Function terminates its execution. If a Function captures a Resource, the Function acquires the Resource when it starts execution and releases the Resource when it terminates. Refer to Section 4.12 for more information on order of execution.

Captured resources are not consumable; rather, they represent renewable resources such as computer memory. A renewable resource is captured (and held) at the beginning of the Function's execution and released at the end of the Function's execution.

Consume/Produce In Lieu of Capture

<table>
<thead>
<tr>
<th>Consume/Produce In Lieu of Capture</th>
</tr>
</thead>
<tbody>
<tr>
<td>If all functions on a branch capture a Resource; instead of having each Function capture the Resource, have the first Function on the branch consume the Resource and have the last Function on the branch produce the Resource.</td>
</tr>
</tbody>
</table>

The amount of Resource consumed, produced, or captured is designated by the Amount attribute of the corresponding relationship. The Amount attribute can be specified as a constant, random number, or the result of executing a script. This uses the NumberSpec described in Section 2.4.

The Acquire Available attribute on these relationships is a Boolean value (true/false) that specifies whether the Function should reserve the available resources while waiting for the full amount to be available. If set to false, the Function waits for the full amount to become available before it acquires the Resource Amount it needs to execute. If set to true, the Function acquires the amount of Resource currently available and waits for the remainder of the Resource to become available before it executes.

5.1 Executing a Model with Resources

Using our simple example, EFFBD with Loop and Loop Exit (Figure 41), we have modified the model by adding a Resource, MIPS, and deleting the trigger. When a Resource is displayed in the timeline window, the amount of the Resource is displayed to show the available amount of the Resource at any given time. If a Resource is demanded by a Function, the Resource amount is deducted from the amount available and the timeline display is decremented to show the amount remaining. If the Acquired Available relationship attribute is set to true and an insufficient amount is available, then the Resource is highlighted in red to indicate that the Resource is reserved for a Function. In addition, the Function that requested the Resource will not execute until the full amount is available, indicating a starved Function waiting for a Resource. The delay-time for the Function from requesting the resource amount until acquiring it is depicted on the timeline by a magenta colored timeline bar preceding the execution of the Function.
As shown in the timeline above (Figure 52), there are insufficient MIPS, as shown in red, that result in execution delay of three Functions, the delays shown as magenta. The obvious solution to improve performance is to increase the Resource from an Initial Amount of 3 to an Initial Amount of 6. Upon resetting and running the simulation with increased MIPS, the timeline (Figure 53) shows that the resources are now more than adequate and eliminate any delay in execution. Further analysis can be accomplished to optimize the design such that the least amount of resources is specified for the desired performance.
Resources can also be added to a model to provide control. Specifically, Resources can function as triggers. For example, one Function produces a trigger-type Resource that is then consumed by a subsequent Function awaiting the trigger-type Resource. Again, going back to our Loop Exit model, a Resource, Start Branch has been added to the model. First Function produces Start Branch which is consumed by Receive Application. The simulation results are shown in Figure 54. Note that Receive Application is delayed (magenta bar) until First Function completes execution, producing the Resource, Start Branch.

Figure 54 Loop Exit Model with Trigger-Type Resource
6 ENHANCING THE SIMULATOR MODEL USING SCRIPTING

GENESYS uses the Microsoft Visual Basic .NET language to allow users to specify computations and logic to detail the behavior and resource models. The power of the GENESYS simulator model is enhanced by incorporating scripting. The model becomes much more powerful, allowing the user to vary input conditions and logic from one simulation run to the next as well as collecting data in alternative format other than the timeline for detailed analysis. This section is intended to provide a brief introduction to the use of Microsoft Visual Basic within the GENESYS simulator.

6.1 Script Basics

Scripts, written using Microsoft Visual Basic\(^2\), are added to a GENESYS simulator model through the Edit NumberSpec script window or the Edit ScriptSpec Window; an example window is shown in Figure 55. These windows can be accessed by selecting the
\textit{Edit} button for the applicable attribute or double-clicking the relationship attribute then selecting the script button. This window consists of the following parts: the Editor ribbon at the top of the window; the Script pane on middle left; the Error pane on the lower left; the Solution Browser pane on the middle right; the Explorer pane on the lower right.

![Figure 55 Edit ScriptSpec Window](image)

\(^2\) NOTE: The version of Visual Basic used within GENESYS for scripting is Visual Basic .NET 4.0. GENESYS does not use Visual Basic for Applications nor VBScript.
6.2 GENESYS Application Programmer's Interface

The user’s scripts, written in Visual Basic, access the GENESYS repository, and hence the project data, through the GENESYS Application Programmer’s Interface (API). Details on using the API are given in the Getting Started with GENESYS API document, which is included in the GENESYS documentation.
APPENDIX A - GENESYS SIMULATOR DISTRIBUTIONS

GENESYS offers the advanced simulator user the ability to perform simulations that are more complex. These simulations emulate conditions that are more realistic where events and timing possess random elements. GENESYS uses two primary features for better using the simulation results to effect change to the desired system behavior.

The first feature is the selection and specification of the random distribution characteristics. One may choose from one or several probability distributions from which to draw random numbers, e.g., binomial, Bernoulli, Gaussian, Poisson, etc. Once the probability distribution is chosen, values for the parameters that govern the behavior of the probability distribution can be chosen next, such as the mean and variance for the Gaussian probability distribution.

The second primary feature is the choice of which Random Number Stream serves as the random value selection source for any given simulation variable. Multiple Random Number Streams are offered because this capability allows users to use multiple probability distributions in the simulation and it offers a set of uncorrelated simulation variables when drawing random variables from the same probability distribution.

For repeatability, GENESYS allows users to specify which Random Number Stream to begin with. To get this repeatability, GENESYS allows users to specify the beginning Random Number Stream. The stream can be viewed from the User Random Streams tab of Preferences. Table 11 provides some of the more common parameters that characterize random variable definitions.

Whether setting the default random variable distribution or editing an attribute such as Duration in the class Function, clicking the Random tab or Random radio button enables random distribution editing. A drop-down list allows users to choose the Distribution type, e.g., binomial, uniform, etc. For the random distribution selected, certain parameters governing the characteristics of the random distribution are available for editing. The following section provides a brief description of the preset random probability distributions, and their governing parameter definitions.

Random Variable n – A variable whose value randomly changes as a function of one or more parameters. GENESYS uses discrete random variables. Discrete random variables take their values from a finite ordered collection in which the members can be placed in any order.

Random Number Stream – In GENESYS, a sequence of random numbers is captured and associated with a random number stream. Each random number stream is "randomly" generated using an appropriate random number generator with using some set of initial conditions. One may use the same set of initial conditions to generate the same sequence of random variables, or users may want to begin each simulation with a specific "random" value.
Table 11 Random Variable Definitions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Weighted average or expected value; provides a measure of the most likely value of the distribution</td>
</tr>
<tr>
<td>Variance</td>
<td>Provides a measure of the spread of the random variables relative to the mean of the distribution.</td>
</tr>
<tr>
<td>PDF</td>
<td>Probability density function. The PDF is used to determine the probability that a random variable will lie within a range of values.</td>
</tr>
<tr>
<td>Random number stream</td>
<td>A sequence of random numbers</td>
</tr>
</tbody>
</table>

A brief description of the preset random probability distributions and their governing parameter definitions is provided below. The graphical representation and details about of these distributions is taken from Discrete Event Simulation in C by Kevin Watkins.

There is much more to random number methodology and the concepts of probability than what is presented here. For additional study, in addition to Discrete Event Simulation in C by Kevin Watkins, we recommend Systems Engineering and Analysis by Benjamin S. Blanchard and Wolter J. Fabrycky.

Bernoulli
The Bernoulli distribution specifies the probability of a successful event as "p." and the probability of failure of that event as "1-p." Given "p," the Bernoulli distribution calculates the value to have a successful outcome (such as a time duration of one) if the random number is "<= p." Otherwise, the distribution calculates the value to have an unsuccessful outcome (such as a time duration of 0) if the random number is ">p." This returns a Boolean value (True or False) that determines if the event was successful. If used to specify a function duration, the value of p must be > 0 and <= 1.0, and if the result is True, then the Function executes with a duration of 1. If False, the Function executes with a duration of zero.
Beta
The Beta distribution is useful when you need to generate a continuous random variable between fixed bounds. For instance, use it to model random proportions such as the fraction of packets requiring retransmission in a data transmission link. The beta distribution has two parameters, alpha, which affects the degree of skew, and beta, which affects the peak, where alpha > zero and beta > zero.

Binomial
The Binomial distribution is used to model the number of successes in a sequence of n independent trials.

Chi-Squared
The Chi-Squared distribution with n degrees of freedom is the sum of n independent standard normal deviates squared.
Discrete Uniform

In the Discrete Uniform distribution, each value of the random variable is assigned identical probabilities.

Erlang

The Erlang distribution of order r is the waiting time to the rth event in a so-called Poisson process. It is used to model service times.

Exponential

The Exponential distribution is used to model purely random events such as the time between failures or the time between arrivals of a customer.
F
The F distribution is often used for testing variances.

![F Distribution Graph](image)

Gamma
The Gamma distribution is a commonly used distribution that is also suitable as the basis for the generation of random variables for several other distributions.

![Gamma Distribution Graph](image)

Geometric
The Geometric distribution represents the number of trials that occur in a sequence of Bernoulli trials until the first success is encountered.

![Geometric Distribution Graph](image)
Laplace
The Laplace distribution looks like an exponential distribution with a mirror image in the y-axis.

Lognormal
The product of a large number of positive random variables tends to have a lognormal distribution.

Negative Binomial
The negative binomial distribution gives the number of failures before the n^{th} success.
Normal
The Normal or Gaussian probability distribution is used extensively because it is useful for describing many statistical processes.

Poisson
The Poisson distribution is the limiting case of the Binomial distribution. This distribution is useful when the opportunity for the occurrence of an event is large, but when the actual occurrence is unlikely. The mean and variance of this distribution are equal, thus there is only one value to enter.

T (Student’s T)
The T distribution is often used for defining confidence intervals.
Triangular
The triangular distribution is a simple way to obtain random variables whose distribution functions exhibit various degrees of skew based on a mode parameter \(m \), \(0 \leq m \leq 1 \).

Uniform
The uniform distribution represents the situation whereby a random number can take values within a finite range with equal probability.

Weibull
The Weibull distribution is used for reliability measures such as the lifetime of components. It is parameterized by two floating values where \(\alpha > 0 \) and \(\beta < 0 \).
APPENDIX B - TRANSCRIPT WINDOW CONTENT DESCRIPTION

As GENESYS simulates a behavior model, it collects execution data in the transcript window. Each row of data represents a single, discrete event in the simulation run. These events include the start and finish of Functions and other constructs within the simulation model. Since a Function can appear multiple places within the FFBD, different constructs representing the same Function can be executing simultaneously. Moreover, a Function construct within a Loop or Iterate construct can execute multiple times during the course of the simulation. Therefore, it is essential to precisely characterize events in the transcript window.

The data is useful for debugging unexpected or undesired simulation results by determining the exact order in which and at what certain events occurred. The transcript window data can also be used to drive limited analyses of the simulation results by filtering, parsing, counting, adding, and subtracting rows; however, scripts and variables can be used within the model to make this process more efficient (See Section 6).

The contents of each column, from left to right, are described below.

Column 1 – Time
The first column contains a floating-point number showing the simulation time at which the event occurred. Frequently, multiple events occur at the same time, and the list is grouped according to time. The unit of time is not specified but is relative to the Duration attribute of Functions and the Delay attribute of Links within the simulation model.

Column 2 – Event ID
To understand the contents of this column, a distinction must be drawn between the “scheduled order” of events and the “order scheduled.” The scheduled order is the order in which the events are handled or executed and the order in which they generate their transcript window output. However, before an event can be executed at a scheduled time, it must first be added to the schedule. The order scheduled is the order in which events are added to the schedule, but this may be different from the order in which the events are scheduled to be executed (the scheduled order). For example, when a Function start event is executed, the corresponding finish event is added to the schedule. However, the time at which the finish event is executed depends on the Duration of the Function. The finish of a Function with a longer Duration might be scheduled before but executed after the finish of a Function with a shorter Duration.

While the first column (time) represents the scheduled order, the second column represents the order scheduled. As each primary event is created and added to the schedule, it is assigned a sequential event ID, which is shown in this column. Associated with each primary event may be one or more “auxiliary” events, which are designated by '(aux)' in the second column. An auxiliary event is never scheduled but occurs during the handling of a primary event. An auxiliary event is listed before the primary event that caused it. Primary and Auxiliary events are explained under the description of the contents of Column 4.

Column 3 – Process ID
A Parallel construct of an FBBD in GENESYS represents the simultaneous execution of all its branches. The simulator must be able to simulate multiple, concurrent “threads of execution.” These are called “processes.” A simulator process corresponds to a branch of the simulation model, for example, a branch of a Parallel construct. However, a process is an “execution artifact.” It is not actually part of the model; rather, it represents the execution of a branch in the model. In a simulation, every construct of an FFBD is executed in the context of a process corresponding to its parent branch. Multiple processes may correspond to the same branch in the model. For example, in a Loop or Iterate construct, the same branch may be executed multiple times. A new process is created each time the branch is executed.

Processes are arranged in a parent-child hierarchy corresponding to the arrangement of branches in the simulated FFBD (and the decomposition of its children Functions). The root of the process tree corresponds to the main branch of the simulated FFBD. A child process is spawned when the simulation
encounters a Parallel construct, a Selection construct, a Loop construct, an Iterate construct, a multi-exit Function, or a Function with the Execute Decomposition attribute set to true. In the case of a Parallel construct, multiple child processes are generated. While traversing the branch of the nested construct, the main process is suspended and the child process is active. At the end of the traversal of the branch of the nested construct, the child process is terminated and execution of the main process resumes. In the case of a Parallel construct, multiple child processes are active, and constructs on each branch execute in the context of the corresponding process. The parent process resumes when all the child processes terminate or when a child process corresponding to a kill branch terminates.

If the simulated FFBD has multiple levels of nested constructs, then child processes may generate their own children, etc. When each process is generated, it is assigned a sequential hierarchical ID number based on the ID of the parent process in which context it was generated. For example, if the simulation encounters a Parallel construct with three branches in the context of Process 8.9, then the processes generated for the three Parallel branches will receive ID numbers 8.9.1, 8.9.2, and 8.9.3. If the Parallel construct is followed by an Iterate construct, and the Count attribute of the associated DomainSet is set to 3, then the process IDs for the three iterations of the branch inside the Iterate construct will be 8.9.4, 8.9.5, and 8.9.6. The second column of the transcript window output reflects the process ID in which context each event is handled.

Column 4 – Event Name

The fourth column of the transcript window output lists the event type. Many events are related to each other and occur in pairs or higher-order groupings. For example, every finish event has a corresponding start event. However, related events often do not appear in consecutive rows of transcript window output. They are frequently separated in time and by other events. Descriptions of the various event types follow:

Primary Events

start, finish, functionTimeout – Every time a GENESYS simulation executes an FFBD construct (Function construct, Parallel construct, etc.), it logs a start event for that construct. If the simulation runs to completion, then it will also finish every construct it starts and log a corresponding finish event.

In the case of a Function construct, IF the following conditions are true:

- It has no decomposition OR
- Its Execute Decomposition attribute is set to false
- If a Timeout attribute has been specified for it AND
- If it is triggered by one or more Items AND/OR
- It captures or consumes one or more Resources,

THEN a functionTimeout event may be logged in lieu of a finish event, IF the following is true:

After the simulation’s flow of control reaches and enables the Function construct, the Timeout attribute duration elapses before

1. The triggering Items AND/OR
2. The captured or consumed Resources become available.

transmittedEvent, receivingEvent, receivedEvent – Although Links are not represented in FFBDs or EFFBDs, a simulation may include Link behavior IF the following are true:

- An Item instance output by a Function in the simulation model is carried by a Link
- The Link is constrained (that is, the Capacity attribute of the Link has been assigned a value) AND
- The Capacity of the Link attribute is non-zero
The relationship between an Item instance and a Link can be described by two time windows. The first is the time period during which the Item instance is being transmitted on one end of the Link. The second is the time period during which the Item instance is being received on the other end of the Link. These time windows may be coincident, overlapping, adjacent, or non-intersecting.

- The transmittedEvent occurs at the point in time when the “trailing edge” of the Item instance goes on the Link.
- The receivingEvent occurs at the point in time when the “leading edge” of the Item instance has completely traversed the Link and comes off the other end.
- The receivedEvent occurs when the trailing edge of the Item instance comes off the Link.

Between the time when the leading edge goes on the Link and the trailing edge comes off the Link, some or the entire Item instance is propagating across the Link medium.

IF the following are true:

- The Size attribute of the Item is relatively large
- The Capacity attribute of the Link is relatively large AND
- The Delay attribute of the Link is relatively short

THEN the receivingEvent may occur before the transmittedEvent.

Specifically, the leading edge of the Item instance may completely traverse the Link (and the Item instance may start coming off the Link) before the trailing edge of the Item instance has been transmitted by the sending side.

Note that there is no transmittingEvent because transmission begins at the same time the Item instance is output by a Function, i.e. when the transmittedEvent and the receivingEvent are added to the schedule. However, if either event is scheduled to occur at that same time, then the event is handled immediately and it is never added to the schedule nor logged to the simulator transcript.

The receivedEvent is added to the schedule during the handling of the transmittedEvent; however, similarly, if the receivedEvent occurs at the same time as the transmittedEvent, then it is handled immediately and not added to the schedule nor logged to the simulator transcript.

Currently, only one kind of Link behavior is supported. The transmittedEvent always occurs as soon as the Item instance is output and therefore never appears in the simulator transcript. The time of the receivingEvent is given by adding to that time the Delay attribute of the Link and the Size attribute of the Item divided by the Capacity attribute of the Link. The receivedEvent is always concurrent with the receivingEvent. Other types of Link behavior will be supported in future releases.

Auxiliary Events

captured, released – If a Function captures a Resource, then the captured event is logged to the transcript window when a GENESYS simulation starts executing a construct representing that Function. The Function construct cannot start until a sufficient amount of the Resource is available. When the simulation finishes executing the Function construct, the released event is logged. (See also the descriptions of the produced and consumed events.)

enabled – When the flow of control of a GENESYS simulation arrives at a Function construct, an enabled event is logged to the transcript window. Note that the Function construct may not be executed immediately if the Function depends upon Resources or triggering Items that are not available at that time.
exitingDecomposition – The decomposition of a Function is represented by an FFBD view opened on that Function. Function nodes that appear in that FFBD may have their own decompositions. A GENESYS simulation traverses and executes the decomposition of every Function construct it encounters where the Execute Decomposition attribute of the Function is set to true.

Within the decomposition of a child or descendant Function of the main FFBD, if the simulation encounters an Exit construct, then the simulation logs an exitingDecomposition event to the transcript window and returns to the parent level, continuing with the construct following the Function construct which decomposition it exited.

queued, dequeued – A GENESYS simulation logs a queued event to the transcript window when it finishes executing a Function construct (with no decomposition or with the Execute Decomposition attribute set to false) and the Function construct outputs an Item instance that triggers another Function construct (with no decomposition or with the Execute Decomposition attribute set to false) in the simulation model.

If the Item is carried by a Link with a non-zero Capacity attribute, then the queued event occurs when the entire Item instance has completely traversed the Link from one end to the other.

The dequeued event is logged when the simulation starts to execute a Function construct (with no decomposition or with the Execute Decomposition attribute set to false) that is triggered by an Item of which an instance has been queued.

Even if a Function construct has been enabled (see the description of the enabled event), execution of the Function construct cannot start until triggering Item instances are available.

Once the Item instance has been dequeued, the Function construct (or any other Function construct triggered by the same Item) cannot start again until another instance of the same Item has been queued.

(Note that the queued and dequeued events apply to triggers. The corresponding events for data stores are write and read.)

produced, excessProduced, consumed – If a Function consumes a Resource, then the consumes event is logged to the transcript window when a GENESYS simulation starts executing a construct representing that Function.

The Function construct cannot start until a sufficient amount of the Resource is available or has been produced by other Function constructs in the simulation model.

If a Function produces a Resource, then the produces event is logged to the transcript window when the simulation finishes executing a construct representing that Function.

If a Maximum amount is specified for the Resource and a Function construct attempts to produce an amount that when added to the amount already available would exceed the maximum allowed, then the excessProduced event is also logged.

(See also the descriptions of the captured and released events.)

timeout – A timeout event is logged to the transcript window in conjunction with the handling of a functionTimeout primary event.
transmitting, transmitted, backlogged, receiving, received – If an Item instance is output by a Function construct in a simulation model and the Item instance is carried by a Link with a non-zero Capacity attribute value, then transmitting, transmitted, receiving, and received events will be logged to the transcript window by the interaction of the Item instance with the Link.

As discussed in the description of the transmittedEvent, receivingEvent, and receivedEvent primary events, the relationship between the Item instance and the Link can be described by two time windows.

The time period during which the Item instance goes on one end of the Link is bracketed by the transmitting and transmitted events.

The time period during which the Item instance comes off the other end of the Link is bracketed by the receiving and received events.

The transmitting event occurs during the handling of the finish primary event for the Function construct that outputs the Item instance.

The transmitted auxiliary event occurs during the handling of the transmittedEvent primary event. If the transmittedEvent is not scheduled or logged because it is concurrent with the transmitting event, the transmitted auxiliary event is still logged.

The receiving auxiliary event occurs during the handling of the receivingEvent primary event. If the receivingEvent is not scheduled or logged because it is concurrent with the transmitting event, the receiving auxiliary event is still logged.

The received auxiliary event occurs during the handling of the receivedEvent primary event. If the receivedEvent is not scheduled or logged because it is concurrent with the transmittedEvent, the received auxiliary event is still logged.

If the Link that carries an Item instance does not have sufficient capacity to do so at the time the Item instance is output by a Function construct, then the backlogged event is logged to the transcript window and the Item instance enters a FIFO (first in, first out) queue.

The sequence of events beginning with transmitting then starts the next time sufficient capacity is available on the Link.

waitingForResources – The waitingForResources event is logged to the transcript window between the enabled event and the start event for a Function construct. The waitingForResources event occurs after any Item instances that trigger the Function construct become available.

Note that the Function construct still may not be executed immediately if the Function depends upon Resources that are not available at that time.

write, read – A GENESYS simulation logs a write event to the transcript window when it finishes executing a Function construct (with no decomposition or with the Execute Decomposition attribute set to false) and the Function construct outputs an Item instance that is input to another Function construct (with no decomposition or with the Execute Decomposition attribute set to false) in the simulation model.

If the Item is carried by a Link with a non-zero Capacity attribute value, then the write event occurs when the entire Item instance has completely traversed the Link from one end to the other.
The read event is logged when the simulation starts to execute a Function construct (with no decomposition or with the Execute Decomposition set to false) that inputs an Item. The Function construct can start and the read event occurs even if it has not been preceded by a corresponding write event.

(Note that the write and read events apply to data stores. The corresponding events for triggers are queued and dequeued.)

Column 5 – Construct ID

When GENESYS builds a simulation model from a GENESYS behavior model, each construct and branch in the simulation model is assigned a unique ID. The structure of the behavior model can be represented as a hierarchy. The branches of, for example, a Parallel construct can be considered children of the Parallel construct. Other constructs (Function constructs, Parallel constructs, etc.) on that branch can be considered children of that branch. A hierarchical view of the behavior model can be seen in the Execution Hierarchy pane of the timeline elements window. The Execution Hierarchy also shows the unique ID of each construct and branch. The unique IDs are hierarchical numbers corresponding to positions within the hierarchy.

The fifth column of the transcript window output lists the ID of the construct responsible for each event. In some cases (e.g., Parallel constructs, which have no names), it is only possible to determine which construct an event references by correlating the construct ID in this column with the Execution Hierarchy in the timeline elements window. The construct ID, in conjunction with the process ID of an event, can be used to match related events, such as the start event associated with a particular finish event.

Note that in the simulation model, a multi-exit Function is represented by two constructs, a Function construct and a “Function Exit Path” construct. The Function Exit Path construct is similar to a Selection construct and can be seen in the Execution Hierarchy immediately after and in the same branch as the corresponding Function construct.

Column 6 – Structure

If the event is executing a control construct, then the name of the structure being processed is displayed in this column. If the event is processing an entity, then this column is blank.

Column 7 – Number

If the event is executing an entity, then the number of the entity being processed is displayed in this column. If the event is processing a structure then this column is blank.

Column 8 – Name

If the event is executing an entity, then the name of the entity being processed is displayed in this column. If the event is processing a structure, then this column is blank.

Column 9 – Event Execution Data

The format of the ninth column depends on the type of event listed in the fourth column (event name) and the type of construct that generated the event. The possible execution data formats specific to each kind of event are listed below. Angle brackets are used to designate variable column values, with the text between the brackets describing the information (e.g., <Function number> would indicate the Function number attribute would appear in the column). Single quotation marks delineate literal column values (e.g., ‘to’).

- captured, released, produced, excessProduced, consumed:

 `<Function number> <Function name> <amount> ‘to’ <Resource name>`
 `<Function number> <Function name> <amount> ‘from’ <Resource name>`
enabled, waitingForResources, functionTimeout, timeout:
<Function number> <Function name>

exitingDecomposition:
'Exit' <Exit name>

queued, dequeued:
<Function number> <Function name> <Item name> 'to' <Item name>
<Function number> <Function name> <Item name> 'from' <Item name>

start, finish:
'Exit From' <Function number> <Function name>
<Function number> <Function name>
'Iterator'
'Loop'
'Parallel'
'Selection'

transmittedEvent, receivingEvent, receivedEvent:
<Link number> <Link name>

transmitting, transmitted, backlogged, receiving, received:
<Function number> <Function name> <Item name> 'to' <Item name> 'via' <Link number> <Link name>

write, read:
<Function number> <Function name> <Item name> 'to' <Item name>
<Function number> <Function name> <Item name> 'from' <Item name>
<Function number> <Function name> 'nil' 'from' <Item name>
Log Messages

One or more lines of the simulation transcript may also be used to record log messages. A log message is drawn from the Log Message attribute of a Function in the simulation model. The value of this attribute, if any, is printed to the Transcript Window when the simulation executes a Function construct representing the Function. The message is logged during the handling of the start event. Log messages begin and end with ‘###’ and also include the alias of the Function class and the Function name.